

DATA MATURITY LEVELS

LEAN ANALYTICS

Cluster for Logistics

eaders Council

Germany

CONTENTS

- 2 < 1 Introduction
- 4 < 2 Lean Analytics and Carbon Productivity
- 5 < 3 Lean Analytics version 2: adding data quality levels for Cargo
- 6 < 4 Aggregated information on Cargo
- 8 < 5 Mapping data quality levels to carbon calculation methodologies and reduction schemes
- 8 < 6 Appendix 1 Shipment Data maturity levels
- 9 < 7 Appendix 2 Fuel Data maturity levels
- **10** < **8** Appendix 3 Definitions of leg, stop and drop

1 INTRODUCTION

The increasing demand for decarbonization of transport and logistics has led to the development of several methods to estimate the GHG emissions of any given supply chain, each with their own pros and cons. Carbon reduction schemes and programs all around the world stimulate companies to not only report emissions but to take action to reduce them.

Carbon productivity is an excellent indicator of the effectiveness of transport. Carbon productivity is defined as the ratio between the useful transport of goods, and the GHG emissions generated by that demand for transport. This ratio is the key performance indicator to be monitored in detail and on aggregate levels.

Figure 1 Carbon productivity: the ratio between useful transport of goods, and GHG emissions

As explained in previous Lean & Green papers¹, measuring the carbon productivity of supply chains, both in detail per part and integrated at a global level is the best approach for identifying actions that will reduce GHG emissions. Lean Analytics² has been introduced in 2016 as an excellent method to analyze carbon productivity in the context of operational excellence.

This paper introduces version 2 of Lean Analytics, broadening the maturity levels of cargo data that can be used in the analysis. In practice some shippers have limited-to-zero access to detailed fuel data from their transporting companies, let alone allocated fuel data to shipments. They have to rely on estimated amounts of fuel derived from length of trips and/or standard consumption factors, or use sophisticated tools and models that can predict the amount of fuel needed for a given trip and route. Transporters sometimes only have aggregated amounts of cargo available. Version 2 of Lean Analytics allows for a broad range of data maturity levels to be combined in one analysis.

¹ Published on http://lean-green.eu/

² http://lean-green.eu/wp-content/uploads/2017/08/3-Analytics.pdf

2 LEAN ANALYTICS AND CARBON PRODUCTIVITY

Let's start with a recap of the principle of Lean Analytics.

Lean Analytics³ uses the fundamental drivers of the business as input: the actual movement of goods combined with the amount of energy (currently mostly diesel fuel) expended to fulfill this particular demand.

The amount of energy is not only useful for calculating GHG emissions: it is also a proxy for the resources used to fulfill the demand: the costs of assets and consumables and labor expended.

Figure 2 Lean Analytics

The data is combined and enriched, delivering a valuable data set that can be mined for various purposes. The result is both valuable operational information that enhances standard financial information from financial systems and allows for ex-ante and expost analysis, and GHG reporting in any format desired.

³ Supported by the 'Topsector Logistiek', a program for innovation in logistics made possible by the Dutch Government

3 LEAN ANALYTICS VERSION 2: ADDING DATA QUALITY LEVELS FOR CARGO

In the first version of LGA the movement of goods is measured by collecting itemized freight bill data for a given period (for instance a month). The energy used is measured by the total amount of fuel (energy) used in the same period for the transport of these particular goods.

The more granular the fuel data is, the better the information that is generated. The best possible information quality is achieved if fuel consumption is recorded per vehicle per day or trip, and combined with the freight bills for that vehicle. This level of data quality is already seen in the market, as some transporting companies collect detailed daily data from their fleet.

However, in practice some shippers have limited-to-zero access to fuel data from their transporting companies, let alone allocated fuel data to shipments. They have to rely on estimated amounts derived from length of trips and/or standard consumption factors, or use sophisticated tools⁴ and models that can predict the amount of fuel needed for a given trip and route.

The LGA version 1 (published in 2016)⁵ therefore allows for 4 levels of data quality for fuel: Bronze, Silver, Gold, and Gold+ for those companies that can achieve the highest possible level of granularity. The minimum requirement for the Bronze level is that fuel usage is estimated per 'Transport Service Category' (TSC), aggregated per year or more often. A TSC is used within the GLEC Framework to describe a group of transport activities that are more or less comparable, like distribution, or international FTL. Averaging out fuel usage across different categories and modalities would lead to a very low information value, therefore fuel data collection would need to be specific for a given TSC.

⁴ For example a tool like EcoTransIT

⁵ http://lean-green.eu/wp-content/uploads/2017/08/3-Analytics.pdf for a detailed explanation of version 1

LEAN & GREEN EUROPE

4 AGGREGATED INFORMATION ON CARGO

Although freight bill data is widely used in a digital format, getting access to the digital data for the purpose of LGA analysis in all levels of the supply chain can be a challenge for various reasons: lack of cooperation between shippers and transporters and subcontractors, low priority in IT-departments, reliance on paper-based procedures, and so on.

Furthermore various carbon reduction schemes allow participants to start with an aggregated level of data on fuel (GHG emissions) related to aggregated levels of cargo (tonnes). This data is already collected so it would be desirable to use that data for analytical purposes.

The 4 levels of data quality for cargo data can be described as follows:

- A Freight bill information, itemized per trip or stop
- B Aggregated amounts per month, on a specific leg (part of supply chain) per destination
- **C** Aggregated amount over a supply chain per destination
- D Estimated amounts per year

7-1-2017 - 10 tonne from NL 4141AA - to NL 5124BB - via 4954 Bl	в
January 2017: 10 trips, total 100 tonne from NL 4141AA - to NL 5124BB - via 4954 Bl	BB
2017: 100 trips, total 1.000 tonne from NL 4141AA - to NL 5124BB	С
2017: amount of trips estimated and/or amount of cargo estimated and/or origin/ destination unknown	D

Figure 3 Simplified example of the 4 data levels for cargo

Again the minimum requirement for the D level is that cargo shipped and on fuel used is collected per 'Transport Service Category' (TSC), aggregated per year or more often.

The 4 levels have been defined based on the information value of a level: collecting more detailed data demands effort, therefore the effort should result in better information.

When the cargo levels are combined with the 4 levels of fuel data, it leads to the following combination of levels.

7-1-2017 - 10 tonne	А	100 liter diesel for trip with 4 stops
from NL 4141AA - to NL 5124BB - via 4954 BB		10.000 liter per month, fuel quantity known
January 2017: 10 trips, total 100 tonne from NL 4141AA - to NL 5124BB - via 4954 BB	В	per license plate known per stop, allocated o shipments using tonne.km _{gcb}
2017: 100 trips, total 1.000 tonne from NL 4141AA - to NL 5124BB	С	Total for company 'y' 100.000 liter diesel in 2017 allocated on shipments using tonne.km
2017, amount of tring actimated and/or	n	Estimated fuel consumption of a truck is

Figure 4 Maturity of cargo and fuel data

These 4 levels each would lead in theory to 16 different combinations. In practice some combinations are non-sensical, others give in practice more or less the same information value. The result is 4 levels of Data Maturity for the combination. The rule-of-thumb is that the lowest quality (either of cargo or energy/fuel) determines the level.

	B		
	Fuel level A	Cargo Level A	Gold+
2	Fuel level A	Cargo Level B	Gold
3	Fuel level B	Cargo Level A	Gold
	Fuel level B	Cargo Level B	Gold
5	Fuel level C	Cargo Level A	Silver
6	Fuel level C	Cargo Level B	Silver
7	Fuel level C	Cargo Level C	Silver
8	Fuel level C	Cargo Level D	Bronze
9	Fuel level D	Cargo Level A	Bronze
10	Fuel level D	Cargo Level B	Bronze
11	Fuel level D	Cargo Level C	Bronze
12	Fuel level D	Cargo Level D	Bronze

Figure 5 Logical combinations of data quality levels for cargo and fuel

These levels of data maturity can easily be audited and recalculated from original data. They allow for global supply chains to mix and match data from very sophisticated sources with estimated data based on generic consumption factors.

5 MAPPING DATA QUALITY LEVELS TO CARBON CALCULATION METHODOLOGIES AND REDUCTION SCHEMES

As these levels are derived from operational tests and feedback from companies, it was expected that the internal logic would re-appear in existing methodologies used for carbon emission calculations, and carbon reduction schemes. A quick scan of existing methodologies and schemes confirms that these levels can be mapped easily to these approaches. A detailed mapping will be developed in the future.

APPENDIX 1 SHIPMENT DATA MATURITY LEVELS

LEVEL	CARGO/LOAD	DETAILED EXPLANATION	EXAMPLE	VISUALIZ	ATION		
А	Info per stop	Per stop/line item: origin (zipcode pickup), destination (adress delivery or bandover), type	7-1-2017: 10 toppe				c
		of transport (bulk, pallets, parcels etc.) and	from NL 4141AA - to NL 5124BB - via 4954 BB	7-1-2017	• 10 tonne	• 10 tonne	\cdot
		for example CMR / freight bill information			4141AA	4954BB	5124BB
В	Info per leg of	Per leg, cumulated per period: origin (zipcode pickup), destination (address delivery or	January 2017: 10 trips.				C
	handover), type of transport (bulk, pallets, total 100 tonne	January 2017	• 10 tonne	• 10 tonne	\cdot		
		available. Linked to fuel data, preferably per month	to NL 5124BB - via 4954BB		4141AA	4954BB	5124BB
С	Info per	Total per complete supply chain, specified in	2017:				c
	Supply chain	(zipcode pickup), final destination (address	total 1.000 tonne		•	10 tonne	\cdot
		or m3 or) available.	to 5124BB	100 trips	4141AA		5124BB
D		Estimated total amount of cargo per year,	2017:				c
		or cost per year as indicator), or from generic estimated and/or	estimated and/or a		•	? tonne	\cdot
	origin and destination not necessarily esti known, could be replaced by driven distance unk	mount of cargo estimated and/or origin/ destination unknown			125 km		

APPENDIX 2 FUEL DATA MATURITY LEVELS

LEVEL	FUEL/ENERGY	EXPLANATION	EXAMPLE	VISUALIZATION
А	Per stop or trip per vehicle	Per stop or trip per vehicle, measured or calculated by high quality modeling	100 liter diesel for trip with 4 stops	
В	Per month per license plate	Per month per license plate, measured or calculated by high quality modeling	10.000 liter, license plate x License plate known per stop 10.000 liter spread on shipments using tonne.km _{sco}	
C	Per year	Year amount fuel. Measured or directly derived from amount of kilometers driven, for a subfleet per year (using average realised fuel consumption)	Total for company 'y' 100.000 liter diesel in 2017 100.000 liter spread on shipments using tonne.km _{gcD}	
D	Estimated	Estimated, based on generic consumption factors and estimated km per year	Estimated fuel consumption of a truck is 1:3 Liters diesel based on total driven distanceor government statistics	

Note: For other energy carriers, such as biofuel, electricity or hydrogen, the equivalent levels easily can be defined.

- Supply chain = Total overview of all legs. Transport from raw materials, production, harbour, warehouse, distribution, until the product(s) reaches the customer. Various types of transport (modalities). Also known as transport chain in COFRET and GLEC documents.
- Leg = Part of a supply chain. Movement of goods between 2 locations. Referred to as a transport chain element by COFRET and in GLEC documents.
- Stop (drop) = Delivery or collection address in a route on a certain day. One route can contain more stops.

Lean & Green Europe is Europe's leading community for sustainable logistics. Lean & Green Europe combines corporate responsibility for reducing footprints with continuous improvement of operational performance and value for customers.

Lean & Green Europe develops community-driven practical tools and guidelines for applying international emission calculation standards. Lean & Green members include > 500 shippers, carriers, logistics service providers, ports, terminals and retailers.

Lean & Green Europe

Ezelsveldlaan 59 2611 RV Delft www.lean-green.eu

For comments or more information please contact us at info@lean-green.eu

Other publications in this series:

(**#1**) 2013

Giving significance to big data in supply chains

#2) 2015

Metrics for continuous improvement of the supply chain performance

2016 Analytics

#4) 2016

#3

Introduction to the calculation of CO₂ emissions for participation in Lean & Green

#5) 2017

#6

Carbon productivity in global supply chains

2018 Data maturity levels

100% Collaboration 0% Emission

